
Seal data sheet

T11/BT

The T11/BT seal is designed for applications, where corrosion, sizes and overall dimensions could be a problem for traditional metal case seals.

the T11/BT is made with a half O-ring on the top of its back for a better static sealing performance.

The TR11/BT features a seal back in high resistance rubber/fabric and a lip made of abrasion-resistant compounds loaded with PTFE.

A vulcanized finger spring provides a uniform distribution of pressure on the shaft exerted by the sealing lip.

All the inconveniencies shown by garter spring seals are avoided, such as lip overturning, the spring popping out from its housing and consequent damages of bearing and shaft.

As an option (version HCF) the seal can be equipped with a metal wire insert to improve the resistance against shrinkage in the circumference.

This seal can withstand pressures up to 1 bar.

The T11/BT is also available as split version T11/BT/SPLIT enabling easier assembly (no pressure applicable) in applications, where it would be difficult or even impossible to use an endless design. Both designs, T11/BT endless and T11/BT/SPLIT require a retainer plate for a correct operation. In the case of a SPLIT version, the option of HCF is NOT applicable.

There is also the possibility of gluing the T11/BT/SPLIT large diameter seals, using cold gluing processes. In case of gluing the maximum pressure is 1 bar.

Exclusive features of T11/BT seals are:

- Mechanical locking of seal due to a rubber button (integrated half O-ring)
- Increased sealing capability at the static seal area due to the rubber button
- Vulcanized finger spring
- Uniform distribution of the sealing lip pressure on the shaft
- Spring fixed in groove therefore no inconveniences related to the spring coming out of its position e.g. during mounting
- Increased resistance against circumferential shrinkage due to the metal wire insert (only valid for HCF version

Possible size range: $\emptyset d_{min} = 36$ mm; $\emptyset D_{max} = 2540$ mm (please also see the drawing at the next page).

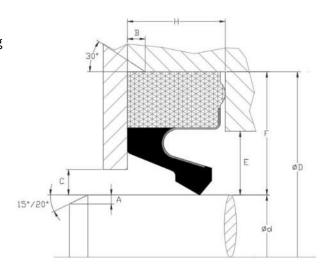
Materials

The materials used for the T11/BT seal may vary depending on the application demands. Standard and special products are made according to the table below. SKF Seals Application Engineering / TENUTE Technical Department is available for any further investigation on different materials.

Standard production		Special production on demand		
Lip	NBR	Lip	HNBR, FKM, EPDM, MVQ	
Spring	AISI 301	Spring	AISI 301 – AISI 316	

The table below shows working temperature ranges (minimum, maximum, peak (*)) applicable to each type of compound as well as possible spring configurations.

Material	Tempo	erature	Recommended circumferential shaft speed		
	min	max	max		
	°C	°C (*)	m/s		
NBR	-30	+100 (+120)	10		
HNBR	-40	+150 (+175)	18		
VMQ	-50	+200 (+250)	24		
FKM	-20	+200 (+250)	24		


Assembly of T11/BT seals

The drawing shows the details of the housing dimensions and the assembly of the T11/BT seal in applications without pressure.

Particular applications or requirements different from those details shall be agreed with the TENUTE Technical Department / SKF Seals Application Engineering.

$$C_{\text{maximum}} = 0.2 \text{ x F}$$

$$E_{minimum} = 0.3 \times F$$
; $E_{maximum} = 0.5 \times F$

Shaft and housing diameter tolerance

Shaft diameter Ød		Tolerance	Housing diame	eter ØD	Tolerance	
Over	Up to		Over	Up to		
mm	mm		mm	mm		
36	1 000	h11	56	1 000	H10	
1 000	2 480	h10	1 000	2 540	H9	

Housing height tolerance

Housing height H	Tolerance		
mm	mm		
Up to 15	+0 / -0,1		
Over 15	+0,1 / -0,1		

Shaft and housing chamfers

Shaft diameter Ød		Shaft chamfer A	Housing diameter ØD		Housing chamfers	
Over	Up to	minimum	Over	Up to	Н	В
mm	mm	mm	mm	mm	mm	mm
36	50	1,5	56	250	15	1,5
50	250	3	250	800	20	2
250	800	4,5	800	1 500	30	3
800	1 500	6	1 500	2 540	40	4
1 500	2 480	7,5				

Shaft and housing surface finishing

A roughness of Ra from 0,2 to 0,6 μ m is recommended for the shaft in standard applications, while in case of high speeds, a finishing to Ra from 0,2 to 0,4 μ m is recommended. Plunge grinding is required. For the housing bore a finish turning is sufficient.

Shaft hardness

Up to 15 m/s	Over 15 m/s
40 HRC	50 HRC and above

skf.com | skf.com/seals

- SKF and TENUTE are registered trademarks of the SKF Group
- © SKF Group 2024

The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication, but no liability can be accepted for any loss or damage whether direct, indirect, or consequential arising out of the use of the information contained herein. All data mentioned in this publication are given as an indication. SKF Seals Application Engineering / TENUTE Technical Department reserves the right to change and improve its products according to application specifications and test results.

Seal data sheet T11/BT · February 2024